Metric Misspecification due to Test Multidimensionality

and Consequences for the Measurement of Growth

Xiangyi Liao®  Daniel M. Bolt?  Jee-Seon Kim!
LUniversity of Wisconsin, Madison

Ideas In Testing Research Seminar
November 4, 2022

JWISCONSIN

UNIVERSITY OF WISCONSIN-MADISON




Critiques of the Interval Property of IRT Metric Y

® Educational research outcomes frequently rely on an assumption that
measurement metrics have interval-level properties.

® Education measurement scales, including the latent scales derived
from item response theory (IRT) models, may lack interval scale
properties that permit comparisons of score gains (Ballou, 2009;
Betebenner, 2011; Michell, 2009).

® While most investigators know enough to be suspicious of
interval-level claims, and in some cases even question their findings in
light of such suspicions, what is absent is an understanding of the
measurement conditions that create metric distortions.
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ECLS-K Framework & Measurement Modeling \/

e ECLS-K (Early Childhood Longitudinal Study) Reading Assessment
» possible dimensionality issue in the test items
e.g. items on sub-domains including basic skills, initial understanding,
developing interpretaion, and critical stance
» dimensionality is related to different item types
e.g. "name letter" (easier) versus "decoding” (more difficult) items
» dimensions are highly correlated
» Unidimensional Item Response Theory (UIRT) model is used to scale

the test scores

® We seek to simulate multidimensionality of the form on ECLS-K and
examine metric distortion when 2PL is applied.
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Fitting UIRT to Multidimensional Data: Model Fit

® Two-dimensional response data
» highly correlated dimensions

01 -1 1 0.8
(5) = (1) 7))
» Between-item dimensionality
» easy items measuring 61, difficult items measuring 6o

® Model fit

AIC BIC logLik
UIRT 197711.2 198232.6 -98775.62
MIRT 195555.9 196083.8 -97696.95

® |tem-fit statistics can hardly detect any misfit when fitting UIRT
model to multidimensional data with highly correlated dimensons.
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Fitting UIRT to Multidimensional Data Y

A long-standing conjecture: the fitted UIRT to multidimensional data
represents a linear composite of the dimensions present in a test.

0o = w101 + wab>

Figure 1: Illustration of a latent bivariate distribution for (61, 63) with a
corresponding linear composite direction denoted by 6,,, Strachan et al. (2022)
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UIRT Approximation: Two-dimensional Example Y

® Two-dimensions where dimensionality is related to item types

01 -1 1 038
()~ ()6 %)
> 0y on easy items: a ~ N(1.3,0.2),b ~ N(—1,1)
> 05 on difficult and discriminative items: a ~ N(2,0.2),b ~ N(1,1)

® (Calibrate the response data with UIRT model

® Estimate wy and weq by ability groups from separate latent regressions

é = w101 + Wwebs
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UIRT Approximation: Two-dimensional Example, Cont'd
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Figure 2: Illustration of the UIRT Approximation by Dimension, Two Group
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UIRT Approximation: Two-dimensional Example, Cont'd
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Figure 3: Illustration of the UIRT Approximation by Dimension
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UIRT Approximation: Two-dimensional Example, Cont'd
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Figure 4: Illustration of the UIRT Metric Distortion in 1CCs
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UIRT Approximation: Two-dimensional Example, Cont'd
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Figure 5: Illustration of the UIRT Metric Distortion in 1CCs
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Consequences of UIRT Approximation: Matthew Effect

® Students who start lower on the metric may tend to be credited with
lesser gains than students that start higher even if they grow
equivalent amounts.
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Figure 6: Group Differences in Reading Growth and Achievement over the First 6
Years of School, ECLS-K data, from Judge & Bell (2010)
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Consequences of UIRT Approximation: Vertical Linking
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Figure 7: Relationships between Vertically Scaled EAP Estimates and s, from
Carlson (2017)
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Conclusion W

e UIRT @ as a curvilinear approximation when dimensionality is related
to item difficulty

® |Interpretation of the UIRT 6
“The IRT scale scores may be used as longitudinal measures of overall
growth. However, gains made at different points on the scale have
qualitatively different interpretations. [...] Comparison of gain in scale
score points is most meaningful for groups that started with similar
initial status.” (Pollack et al., 2005)

® Selecting anchor items in vertical linking
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Discussion W

Thank you!
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S1. ICC Asymmetry Y

® Samejema’s (2000) logistic positive exponent (LPE) model

exp (a;(0i — b;)) )5”'
1+ exp (a;(0; — b;))
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Figure 8: Example ltem Characteristic Curves (ICCs) and their First Derivatives of
LPE Items (a = 1,b = 0 for all items).
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