
Extended Sequential Item Response Model for
Multiple-Choice, Multiple-Attempt Test Items

Yikai Lu1, Ying Cheng1

1University of Notre Dame

Friday 4th November, 2022



Outline

1 Background

2 Introduction to Sequential Item Response Theory (SIRT)

3 SIRT models for Multiple-Choice, Multiple-Attempt Test Items (SIRT-MM)

4 Extended SIRT models for Multiple-Choice, Multiple-Attempt Test Items
(SIRT-MMe)

5 Item Parameter Estimation

6 Simulation Study

7 Conclusion & Next Steps

1 / 49



Motivation of our research

• Can we further improve person estimation (θ̂s) for multiple-choice test
items?

• E.g.) A geography question.
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Can we get more information?

• C is the right answer!
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Can we get more information?

• C is the right answer!
• What if we allow them to rank the options in terms of plausibility?

e.g.) CDAB, DCAB.
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Can we get more information?

• C is the right answer!
• What if we allow them to rank the options in terms of plausibility?

e.g.) CDAB, DCAB.

• What if we allow them to have chances until they get the correct answer
(i.e., Answer-Until-Correct procedure)?
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How about this problem?
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A Multiple-Attempt Model

• Analogy: we dont treat all the test items equally in IRT
People who have the same total sum score of 8/10 could still have
individual differences.

• Likewise, we don’t treat (first) wrong responses equally by allowing
multiple attempts!

• Some people have partial knowledge to identity some distractors but not
all.

• Partial information on a multiple-choice test item is defined as the ability
to eliminate some, but not all, the incorrect choices, thus restricting
guessing to a proper subset of choices that includes the correct choice.
(Frary, 1980)
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Multiple-Attempt/Answer-Until-Correct (AUC)

• Scoring scheme (partial credits) in classical test theory
s = K − k
where K is the number of answer options and k is the number of attempts
needed to get the correct answer option.

• Gilman and Ferry (1972) reported higher reliability than zero/one scoring,
but Frary (1980) found that it failed to yield consistent improvements in
reliability because of guessing and item differences.
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Sequential Item Response Theory

Tutz (1990) proposed sequential item response models including the
sequential Rasch model and the sequential rating scale model.

• Let Yik be the response of the k th attempt to the item i .

• Yik = 1 if correct at the k th attempt. 0 otherwise.

• We let P(Yik = 1|Yik−1 = 0, ...,Yi1 = 0,θ) = Hik(θ).
• Then the unconditional probability of reaching the correct answer at the

k th attempt is:

P(Xi = k |θ) = P(Yi1 = 0, ...,Yik−1 = 0,Yik = 1|θ) (1)

=
k−1

∏
h=1

[1−Hih(θ)]Hik(θ) (2)
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Sequential Item Response Theory

Tutz (1990) proposed sequential item response models including the
sequential Rasch model and the sequential rating scale model.

• The sequential Rasch model is:

Hik(θ) =
exp(θ −bik)

1+exp(θ −bik)
(3)

P(Xi = k |θ) =
k−1

∏
h=1

[1−Hih(θ)]Hik(θ) (4)

=
exp(θ −bik)

∏k
h=1(1+exp(θ −bih))

(5)
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Sequential Item Response Theory

1Bergner et al. (2019)
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Sequential Item Response Theory

Figure: a = 1.7,b = (0,−0.5,−1,−1.5)
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Model Misspecification?

• Suppose K is the number of response choices/the maximum number of
attempts.

• Then P(Xi = K |θ)→ 1 as θ →−∞.

• This means that when people have almost no ability, they always need K
attempts to reach the correct choice.

• Is this natural?

13 / 49



SIRT models for Multiple-Choice, Multiple-Attempt Test Items
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SIRT models for Multiple-Choice, Multiple-Attempt Test Items

Some thought experiments...

• What’s P(Xi = k |θ) when θ →−∞? assuming all the options look
equally uncertain to them (homegenious).

• It’s 1
K . Why?

P(Xi = 1|θ) = 1
K

(6)

P(Xi = 2|θ) =K −1
K

· 1
K −1

=
1
K

(7)

(8)

and so on...

• Generating a random permutation of ABCD. The probability of C being at
the k th position is the same.

• Therefore, P(Xi = k |θ) should converge to 1
K when θ →−∞.
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SIRT models for Multiple-Choice, Multiple-Attempt Test Items

Some thought experiments...

• How about P(Xi = k |θ) when θ ̸=−∞ assuming all the distractors are
homegenious.

• Let pT be the probability of considering the correct choice as TRUE.

• Let pD be the probability of considering one distractor as TRUE.

• The probability of selecting the correct choice at the 1st attempt is:
pT

pT+(K−1)pD
.

• That is, the conditional probability Hik(θ) = pT
pT+(K−k)pD

.

• We want the 1st attempt probability the same as the 3PL model with a
fixed guessing parameter. That is:

Hi1(θ) =
1
K
+(1− 1

K
)

exp(ai(θ −bi))

1+exp(ai(θ −bi))
(9)
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How can we derive P(Xi = K |θ )

Some thought experiments...

• Let’s consider the reciprocal!

• 1
Hik (θ) =

pT+(K−k)pD
pT

= 1+(K − k)pD
pT

• Solve α = pD
pT

by

1
Hi1(θ)

= { 1
K
+(1− 1

K
)

exp(ai(θ −bi))

1+exp(ai(θ −bi))
}−1 (10)

= 1+(K −1)α (11)

• After we solve this...

1
Hik(θ)

=
K − k

1+K exp(a(θ −b))
+1 (12)
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Finally

Let f (k) = 1
Hik (θ) .

P(Xi = k |θ) = [
k−1

∏
h=1

(1−Hih(θ))] ·Hik(θ) (13)

= [
k−1

∏
h=1

(
f (h)−1

f (h)
)] · 1

f (k)
(14)

... (15)

=
[1+K exp(ai(θ −bi))]∏k−1

h=1(K −h)

∏k
h=1[K −h+1+K exp(ai(θ −bi))]

(16)

(17)

This is the final form. Only parameters are ai and bi .
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Item Category Response Function

Figure: a = 1.7,b = 0
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Information Function

Figure: Fisher Information of the model with a = 0.58,b = 0 and corresponding 3PL.
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Let’s think back about the assumption we made...

Remember...?

• How about P(Xi = k |θ) when θ ̸=−∞ assuming all the distractors are
homegenious.

As we know, this assumption does not always hold!
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To break the homogenity assumption...

P(Xi = k |θ) = [1+K exp(ai(θ −bi + γik))]∏k−1
i=1 (K − i)

∏k
i=1[K − i +1+K exp(ai(θ −bi + γik))]

(18)

(19)

where γi1 = γiK = 0 always.
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Item Category Response Function

Figure: a = 1.7,b = 0,γ2 = 1

23 / 49



Sequential Item Response Theory

1Bergner et al. (2019)
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Sequential Item Response Theory

1Bergner et al. (2019)
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Extended SIRT-MM models (SIRT-MMe)

• In SIRT-MM models, P(Xi = k |θ) = 1
K when θ →−∞.

• Can we break this assumption? That is, can we incorporate a parameter
similar to the pseudo-guessing parameter in the 3PL model?

Figure: a = 1.7,b = 0,γ2 = 1
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Extended SIRT-MM models (SIRT-MMe)

Remember?

• We let P(Yik = 1|Yik−1 = 0, ...,Yi1 = 0,θ) = Hik(θ).
• The unconditional probability of getting the correct answer at the k th

attempt solely depends on the conditional probability of it:

P(Xi = k |θ) = P(Yi1 = 0, ...,Yik−1 = 0,Yik = 1|θ) (20)

=
k−1

∏
h=1

[1−Hih(θ)]Hik(θ) (21)
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Extended SIRT-MM models (SIRT-MMe)

Remember?

• P(Xi = k |θ) = ∏k−1
h=1[1−Hih(θ)]Hik(θ)

• The reciprocal of Hik(θ) is easier to handle:

1
Hik(θ)

=
pT +(K − k)pD

pT
= 1+(K − k)

pD

pT
(22)

• Solve α = pD
pT

by

1
Hi1(θ)

= {c+(1− c)
1

exp(−a(θ −b))
}−1 = 1+(K −1)α (23)

• After we solve this...

1
Hik(θ)

=
(K − k)(1− c)

(K −1)(c+exp(a(θ −b)))
+1 (24)
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Extended SIRT-MM models (SIRT-MMe)

Let f (k) = 1
Hik (θ) .

P(Xi = k |θ) = [
k−1

∏
h=1

(1−Hih(θ))] ·Hik(θ)

= [
k−1

∏
h=1

(
f (h)−1

f (h)
)] · 1

f (k)

=
∏k−1

h=1
(K−h)(1−ci)

(K−1)(ci+exp(ai(θ−bi)))

∏k
h=1[

(K−h)(1−ci)
(K−1)(ci+exp(ai(θ−bi)))

+1]

=
[ci +exp(ai(θ −bi))]∏k−1

h=1
1−ci
K−1(K −h)

∏k
i=h[

1−ci
K−1(K −h)+ ci +exp(ai(θ −bi))]
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To break the homogenity assumption...

P(Xi = k |θ) =
[ci +exp(ai(θ −bi + γik))]∏k−1

h=1
1−ci
K−1(K −h)

∏k
i=h[

1−ci
K−1(K −h)+ ci +exp(ai(θ −bi + γik))]

(25)

(26)

where γi1 = γiK = 0.
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ICRFs of SIRT-MMe Models

(a) γ2 = 0 (b) γ2 = 1

Figure: Item category response functions of SIRT-MMe models with
a = 1.7,b = 0.0,c = 0.2,K = 5 and different γ2. It is equivalent to a SIRT-MM model
when c = 1

K .
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ICRFs of SIRT-MMe Models

(a) γ2 = 0 (b) γ2 = 1

Figure: Item category response functions of SIRT-MMe models with
a = 1.7,b = 0.0,c = 0.3,K = 5 and different γ2.
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ICRFs of SIRT-MMe Models

(a) γ2 = 0 (b) γ2 = 1

Figure: Item category response functions of SIRT-MMe models with
a = 1.7,b = 0.0,c = 0.1,K = 5 and different γ2.
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Fisher Information of SIRT-MMe Models

Figure: Fisher information of θ with a = 0.8,b = 0.0,γk = 0,K = 5.

34 / 49



Marginal MLE with an EM algorithm for Item Parameters

We want to maximize the marginal probability of the observed response
patterns uj :

Pj(uj) =
∫ ∞

−∞

M

∏
i

P(Xi = uji |θ)ϕ(θ)dθ (27)

The likelihood function will be:

L = C
S

∏
j=1

Pj(uj)
rj (28)

logL =
S

∑
j=1

rj logPj(uj)+C (29)

where S = min(K M ,N) is the number of kinds of response patterns and rj is
the number of observed response patterns j .
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Integration is hard

Remember the marginal probability

Pj(uj) =
∫ ∞

−∞

M

∏
i

P(Xi = uji |θ)ϕ(θ)dθ (30)

Gauss-Hermite quadratures allow you to approximate this kind of integrals
well! ∫ ∞

−∞
exp(−x2)f (x)dx ≈

n

∑
i=1

wi f (xi) (31)

If you want to approximate a normal distribution, just transform xi and scale the
sum a bit.
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Integration is hard

We want to maximize L but it involves integration.
Solution: Use Gauss-Hermite quadratures by assuming ϕ(θ) is the standard
normal distribution.

logL =
F

∑
f=1

M

∑
i=1

K

∑
k=1

r̂fik logP(Xi = k |θf )+C (32)

• Now, we only need to find r̂fik and maximize logL!

• r̂fik is a provisional expected number of people who made k attempts for
item i in θf .
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Integration is hard

N̂f can be calculated by ∑M
i=1 ∑K

k=1 r̂fik .

Figure: N̂f from a population simulated by an uniform distribution.
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Integration is hard

We want to maximize L but it involves integration.
Solution: Use Gauss-Hermite quadratures by assuming ϕ(θ) is the standard
normal distribution.

logL =
F

∑
f=1

M

∑
i=1

K

∑
k=1

r̂fik logP(Xi = k |θf )+C (33)

Now, we only need to find r̂fik and maximize logL!

• However, r̂fik is unknown. Thus, we estimate it by taking the expectation
of rfik , which is the E step. And then, maximize logL, which is the M step.

• In the M step, we can estimate the item parameters by the Fisher’s
scoring (NewtonRaphson) method.

vq = vq−1 + I−1t (34)

where v is the parameter estimates, t is the first derivative of logL, and I
is the Fisher information matrix.
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Simulation Study: Item Parameter Recovery

• M = 25 items are simulated by
K = 4
θ ∼ N(0,1)
a ∼ Unif (0.75,1.33)
c ∼ Unif (0.15,0.35)
γ2 ∼ Unif (0,1)

• The c parameter needs to be regularized/penalized. In this simulation
study, we used a Ridge penalty.

• We have two conditions for the b parameter: we included the
b ∼ Unif (−2,2) and the b ∼ Unif (0,2) condition to see if the new SIRT
model can recover the partial information, which will manifest when
subjects respond to difficult items with multiple attempts.

• We take the averages of 30 replications.
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Results: Item Parameter Recovery

b parameter N SE BIAS RMSE
b a c γ2 b a c γ2 b a c γ2

Unif (−2,2) 500 0.71 0.32 0.23 0.32 -0.02 0.15 -0.01 -0.03 0.69 0.47 0.21 0.32
Unif (−2,2) 1000 0.46 0.21 0.15 0.22 -0.06 0.05 -0.03 -0.02 0.54 0.28 0.19 0.22
Unif (−2,2) 2000 0.31 0.14 0.10 0.16 -0.04 0.01 -0.02 -0.01 0.44 0.21 0.15 0.18
Unif (−2,2) 4000 0.23 0.10 0.08 0.12 -0.05 -0.01 -0.02 0.01 0.37 0.15 0.12 0.12
Unif (−2,2) 8000 0.15 0.07 0.05 0.08 -0.01 0.00 -0.01 0.00 0.24 0.10 0.09 0.08
Unif (0,2) 500 0.47 0.34 0.11 0.26 -0.17 0.18 -0.04 -0.05 0.56 0.63 0.15 0.28
Unif (0,2) 1000 0.29 0.21 0.07 0.19 -0.11 0.05 -0.02 -0.03 0.40 0.32 0.11 0.19
Unif (0,2) 2000 0.19 0.15 0.05 0.13 -0.05 -0.00 -0.02 -0.01 0.31 0.22 0.08 0.13
Unif (0,2) 4000 0.12 0.10 0.03 0.10 -0.02 -0.00 -0.01 -0.00 0.18 0.15 0.05 0.10
Unif (0,2) 8000 0.09 0.07 0.02 0.07 -0.02 -0.01 -0.01 0.00 0.13 0.11 0.04 0.07

Table: Item Recovery Statistics for 10 conditions
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Simulation Study: Person Parameter Recovery

• Item parameters are estimated by simulated response matrices.

• θ is estimated by Expected A Posteriori (i.e. E(θ |X)).
• Our model is compared to a 3PL model.
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Results: Person Parameter Recovery

Figure: RMSE for θ estimates in b ∼ Unif (−2,2) condtion.
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Results: Person Parameter Recovery

Figure: RMSE for θ estimates in b ∼ Unif (0,2) condtion.
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ICRFs of SIRT-MMe Models

(a) RMSE for θ estimates in b ∼ Unif (−2,2)
condtion.

(b) RMSE for θ estimates in b ∼ Unif (0,2)
condtion.
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Results: Person Parameter Recovery

Figure: RMSE conditioning on θ ranges when N = 4000,M = 25.
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Conclusion & Next Steps

• We have demonstrated that the new SIRT model parameters could be
estimated reliably with N = 2000.

• It offers more accurate person parameter estimates than the 3PL model.
• Next steps include:

Getting reliable real data to try our model.
Allowing non-immediate (i.e., possibly forgetting/remembering previous
answer choices) and/or longitudinal responses.
Jointly modeling response time.
Applications to Cognitive Diagnostic Models.
Fit statistics and model selection.
Detailed comparison between the SIRT and CTT in AUC.
Application to Computerized Adaptive Testing.
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Thank you!

Questions?
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