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Critiques of the Interval Property of IRT Metric

• Educational research outcomes frequently rely on an assumption that
measurement metrics have interval-level properties.

• Education measurement scales, including the latent scales derived
from item response theory (IRT) models, may lack interval scale
properties that permit comparisons of score gains (Ballou, 2009;
Betebenner, 2011; Michell, 2009).

• While most investigators know enough to be suspicious of
interval-level claims, and in some cases even question their findings in
light of such suspicions, what is absent is an understanding of the
measurement conditions that create metric distortions.
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ECLS-K Framework & Measurement Modeling

• ECLS-K (Early Childhood Longitudinal Study) Reading Assessment

▶ possible dimensionality issue in the test items
e.g. items on sub-domains including basic skills, initial understanding,
developing interpretaion, and critical stance

▶ dimensionality is related to different item types
e.g. ”name letter” (easier) versus ”decoding” (more difficult) items

▶ dimensions are highly correlated
▶ Unidimensional Item Response Theory (UIRT) model is used to scale

the test scores

• We seek to simulate multidimensionality of the form on ECLS-K and
examine metric distortion when 2PL is applied.
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Fitting UIRT to Multidimensional Data: Model Fit

• Two-dimensional response data

▶ highly correlated dimensions(
θ1
θ2

)
∼ N

((
−1
1

)
,

(
1 0.8
0.8 1

))
▶ Between-item dimensionality
▶ easy items measuring θ1, difficult items measuring θ2

• Model fit

AIC BIC logLik

UIRT 197711.2 198232.6 -98775.62
MIRT 195555.9 196083.8 -97696.95

• Item-fit statistics can hardly detect any misfit when fitting UIRT
model to multidimensional data with highly correlated dimensons.
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Fitting UIRT to Multidimensional Data

A long-standing conjecture: the fitted UIRT to multidimensional data
represents a linear composite of the dimensions present in a test.

θα = w1θ1 + w2θ2

Figure 1: Illustration of a latent bivariate distribution for (θ1, θ2) with a
corresponding linear composite direction denoted by θα, Strachan et al. (2022)

5 / 16



UIRT Approximation: Two-dimensional Example

• Two-dimensions where dimensionality is related to item types(
θ1
θ2

)
∼ N

((
−1
1

)
,

(
1 0.8
0.8 1

))

▶ θ1 on easy items: a ∼ N(1.3, 0.2),b ∼ N(−1, 1)
▶ θ2 on difficult and discriminative items: a ∼ N(2, 0.2),b ∼ N(1, 1)

• Calibrate the response data with UIRT model

• Estimate w1 and w2 by ability groups from separate latent regressions

θ̂ = ŵ1θ1 + ŵ2θ2
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UIRT Approximation: Two-dimensional Example, Cont’d
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Figure 2: Illustration of the UIRT Approximation by Dimension, Two Group
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UIRT Approximation: Two-dimensional Example, Cont’d
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Figure 3: Illustration of the UIRT Approximation by Dimension
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UIRT Approximation: Two-dimensional Example, Cont’d
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Example Easy Item

−4 −3 −2 −1 0 1 2 3 4

θ

P
ro

ba
bi

lit
y

on θ1 metric (symmetry)
 

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−4 −3 −2 −1 0 1 2 3 4

θ

P
ro

ba
bi

lit
y

Example Hard Item

on θ2 metric (symmetry)
 

Figure 4: Illustration of the UIRT Metric Distortion in ICCs
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UIRT Approximation: Two-dimensional Example, Cont’d
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Example Easy Item

−4 −3 −2 −1 0 1 2 3 4

−5 −3 −1 0 1 2 3
θ

P
ro

ba
bi

lit
y

on θ1 metric (symmetry)

on θ̂ metric (asymmetry)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−4 −3 −2 −1 0 1 2 3 4

−2 −1 0 1 2 3 4 5
θ

P
ro

ba
bi

lit
y

Example Hard Item

on θ2 metric (symmetry)

on θ̂ metric (asymmetry)

Figure 5: Illustration of the UIRT Metric Distortion in ICCs
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Consequences of UIRT Approximation: Matthew Effect

• Students who start lower on the metric may tend to be credited with
lesser gains than students that start higher even if they grow
equivalent amounts.

with higher reading scores than other students. The reading scores of African
American students and students who were retained a grade were not statisti-
cally different from those of other students at kindergarten entry.

Predicting Reading Trajectories

Although students made gains in reading over time, students with LD per-
formed lower than non-LD students after other variables were controlled
(see Table 2). The reading trajectory slope measured the amount of reading
growth for each month of instruction. As can be seen in Table 2, on average,
a non-African American, non-Hispanic, non-Asian=Pacific Islander, non-LD
girl gained approximately 1.81 points per month. After other predictors were
controlled, the slope coefficients were �0.35, t(10059)¼�14.58, p¼ .000, for
students with early-emerging LD versus other children; –0.33, t(10059)¼
�20.75, p¼ .000, for students with emerging LD; and –0.35, t(10059)¼
�19.76, p¼ .000, for students with late-emerging LD. Figure 1 depicts the
differences in reading scores among each of the four LD status subgroups
over the first 6 years of school. Students from higher SES households experi-
enced more rapid reading growth (0.11). Also, compared to children of other
race=ethnicities in the sample, White children made more growth in reading
over time. Grade retention was not a statistically significant predictor of read-
ing growth. There was a positive correlation (r¼ .35) between kindergarten
initial reading achievement status and the rate of reading growth, indicating
that students who had higher reading achievement scores at kindergarten

FIGURE 1 LD group differences in reading growth and achievement over the first 6 years of
school. IRT¼ item response theory; K¼ kindergarten; Spring 1¼ spring of first grade; Spring
3¼ spring of third grade; Spring 5¼ spring of fifth grade; LD¼ learning disability.
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Figure 6: Group Differences in Reading Growth and Achievement over the First 6
Years of School, ECLS-K data, from Judge & Bell (2010)
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Consequences of UIRT Approximation: Vertical Linking

 

Figure 7: Relationships between Vertically Scaled EAP Estimates and θs, from
Carlson (2017)
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Conclusion

• UIRT θ as a curvilinear approximation when dimensionality is related
to item difficulty

• Interpretation of the UIRT θ
“The IRT scale scores may be used as longitudinal measures of overall
growth. However, gains made at different points on the scale have
qualitatively different interpretations. [...] Comparison of gain in scale
score points is most meaningful for groups that started with similar
initial status.” (Pollack et al., 2005)

• Selecting anchor items in vertical linking
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Discussion

Thank you!

Xiangyi Liao xliao36@wisc.edu
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S1. ICC Asymmetry

• Samejema’s (2000) logistic positive exponent (LPE) model

Pij(Xij = 1|θi; aj , bj , ξj) =
(

exp (aj(θi − bj))

1 + exp (aj(θi − bj))

)ξj
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Figure 8: Example Item Characteristic Curves (ICCs) and their First Derivatives of
LPE Items (a = 1, b = 0 for all items).
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