A pseudo power analysis for CTT item analysis

Alan D. Mead Talent Algorithms Inc.

Psychometrics requires "big data"

- Samples for IRT modeling should be large
 - N >> 100
 - Although maybe N=50 for Rasch (because it only models item difficulty)
- Does CTT have lower requirements?

- CTT difficulty SE = $\sqrt{\frac{p(1-p)}{N}}$, p=proportion correct, N = sample size - CTT ITC SE = $\sqrt{\frac{1-\rho^2}{N-2}} \approx \frac{1}{\sqrt{N}}$

No power analysis?

- Power analysis is the standard for determining sample size requirements
- No power analysis (that I'm aware of) for any psychometric procedure
- One reason (and this isn't obvious to everyone) is that power is only defined in terms of a hypothesis test
 - It's the "power" of correctly rejecting H0 (when H0 is false)

A "pseudo" power analysis

- Purpose: Detect poor-quality items in small samples
 - Calculate corrected item-total correlation (CITC)
 - Flag item as poor quality if CITC < CITC_{CRITICAL}
- CITC_{CRITICAL} might be 0.0 or 0.10

A "pseudo" power analysis (cont.)

- Power = likelihood of correctly flagging poorquality items
- Type I error = flagging high-quality item
- Type II error = not flagging low-quality item
- Heuristic
 - "Pseudo" because no distributional assumptions are being made
 - However, this method of flagging does match common practice

Power

- Ideally higher than 0.80
- Power is increased by:
 - Large samples
 - Large effect sizes
 - Choice of cut-score
- Effect size (here) is the degree of difference between population CITC of "good" and "bad" items

Simulation

- Factors
 - Number of poor quality items: 2, 5
 - Sample sizes: N = 25, 50, 75, 100
 - $CITC_{CRITICAL} = 0.0, 0.10$
- IRT parameters:

	Good Items	Poor Items
IRT Slope	0.80	-0.50
IRT Difficulty	~ N(0,1)	~ N(0,1)
IRT Guessing	0.25	0.25

• Exam length = 25 items

SIMULATION RESULTS

Bad slope = -0.50, $CITC_{CRITICAL} = 0.0$

	8% Flawed Items		20% Flawed Items	
N	Power	Type I	Power	Type I
25	0.97	0.17	0.95	0.21
50	1.00	0.10	0.98	0.14
75	1.00	0.06	1.00	0.11
100	1.00	0.04	1.00	0.08

- Power is excellent, even for N=50
- Type I errors are uncontrolled and excessive
- Additional flawed items degrade performance

Bad slope = 0.0, $CITC_{CRITICAL} = 0.10$

	8% Flawed Items		20% Flawed Items	
Ν	Power	Type I	Power	Туре І
25	0.67	0.13	0.66	0.21
50	0.79	0.08	0.76	0.10
75	0.78	0.05	0.81	0.07
100	0.81	0.05	0.86	0.05

- Power is fairly adequate for N>=50
- Type I errors are uncontrolled and large
- Additional flawed items degrade performance

Summary

- Addressed sample size requirements for detecting poor-quality items
- Framed common item analysis flagging practice as a (heuristic) hypothesis test
 - With "pseudo" Power
 - And "pseudo" Type I errors

Results Summary

- Power was good; Type I errors bad
 - Power high even in tiny samples of N=25
 - Type I errors were uncontrolled and often excessive
- Detecting items with neg. slope (-0.5) easier than items with zero slope
- Additional flawed items degraded results

Conclusions

 Surprisingly good power to detect profoundly flawed items in tiny samples

More modest power for moderately bad items

- Type I errors may not always be a problem
 - Labeling "bad" items as "good" might be worse
 - Possible to gather more data later

Limitations

- This "test" is very much heuristic

 Should work out some kind of distributional test
- Only addresses one, narrow issue in CTT IA
 DIF, Equating, etc. may not work well in small samples
- We lack a good effect size measure, but effect size had enormous impact on power
- In practice, items vary in discrimination (unless you're a Raschian)
- No attempt to distinguish "so-so" from "good" items

Next Steps

- Restrain the Type I error rate
 - Set threshold using simulation of H0 distribution (to control Type I rates)?
 - May require assumptions about population CITC's

Thanks! Questions? amead@alanmead.org