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Lord (1962, p.10) 

Thoughts of observed gain score… 

 

“It is a widespread fault in speech and in thought to substitute the observe value 

for the true value…” 

 

“This sort of thinking can frequently be used without serious results because of 

the fact that in a group the rank order of the observed measurements often 

provide a reasonably good approximation to the rank order of observed scores. 

This approximation usually falls down, however, when we dealing with 

measurement of change. It is for this reason that a consideration of errors of 

measurement is specifically important here. 

 

“For those who like a common-sense, operational approach to problems, for 

those who dislike the use of hypothetical constructs, problems in the 

measurement of change should provide a special challenge, since the usual 

common-sense notions can be shown to be inadequate here and models 

involving unobservable variables seem to be of great practical use.” 
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Classical Test Theory (CTT)  

and Estimated True Score Gain 
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Data 

• A longitudinal set of within-year scores (Fall to Spring) from grade 5 examinees 

taking the HMH Math Inventory 2.7. 

 

• Student’s scores from two testing occasions, denoted as opportunity X (Fall) 

and Y (Spring) were gathered and merged using a unique identifier variable.  

 

• There were 18,484 matched scores from students testing at least twice within 

the school year 

 

• These examinees were merged with the Winsteps calibration p-file to extract 

their empirical grade-level probit ability and transformed to the HMH Math 

Inventory 3.0 reporting scale via the constructed scoring tables to allow the 

reporting of Quantiles. 

 

• Summary statistics were calculated on these data such as reliability, score 

averages, standard deviations, and correlation. 
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Classical Test Theory 

Xi = Ti + Ei   CTT model specifies Xi  as an additive combination of two components that 
may vary over examinees, where Ti is a true score with mean T and variance 𝑇2  and  
there is an error for an examinee with mean 0 and variance 𝐸2   
 
x = T      the mean of the observed scores is equal to the mean of the true scores 
 
TE = 0     errors are uncorrelated with true scores in the population 
 
(E1,E2) = 0 correlation between the errors across people are independent 
 
(E1,T2) = 0  error for a person is uncorrelated with the true score of any other person 
 

𝑿
𝟐  = 𝑻
𝟐 + 𝑬
𝟐  - 𝟐𝑻𝑬   observed score variance 𝑋2  is the summation of true score  

= 𝑻
𝟐 + 𝑬
𝟐                    variance and error variance where the covariance between true  

           score and errors is zero 
 

 = 𝑻
𝟐 / 𝑿
𝟐  = 𝑻
𝟐 / 𝑻
𝟐 + 𝑬
𝟐  = 𝒙𝑻
𝟐   canonical definition of reliability is the squared 

correlation between observed and true scores 
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Kelley’s Regressed Estimate True Score 

 𝑻𝒊   = xi + (1- )x    

= x + (xi - x) 

 
True scores for an examinee may be estimated via the Kelley formula that dates back to at 
least 1923. The Kelley estimate can be framed as (1) the regression of the true scores on 
observed scores, and/or (2) an estimate for an examinee’s true score by starting with the 
mean, and then moving away from the mean in the direction of their observed score in 
proportion to the score reliability. 
 
Kelley’s formula contradicts  CTT in that we should use the examinee’s observed score as 
the (unbiased) estimate of the true score (𝑇𝑖  = xi). See Brennan (2012) for further 
discussion of some fundamental inconsistencies with certain traditional assumptions and 
results in classical test theory vis-à-vis Kelley’s formula. 
 
Note that the Kelley formula will yield the observed score as the estimate of the true score 
when  =1. 
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Kelley’s Regressed Estimate True Score  

(1947, p.409) 

“This is an interesting equation that it expresses the estimate of the true ability 
as the weighted sum of two separate estimates,-one based upon the individual’s 
observed score, X1  , and the other based upon the mean of the group to which 
he belongs, M1. If the test is highly reliable, much weight is given to the test 
score and little to the group mean, and vice versa.” 
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Lord/McNemar Estimated True Gain (CTT) 

 

Lord (1962, p12) noted the estimated value of the true change 𝐺   as the following: 
  

𝐺  = 𝐺  + 𝑏𝐺𝑥.𝑦(𝑥 − 𝑥) + 𝑏𝐺𝑦.𝑥(𝑦 − 𝑦)     𝑇2 − 𝑇1  

  

Where 𝐺  = 𝑦 − 𝑥   
  

𝑏𝐺𝑥.𝑦 = (1- 𝑟𝑦𝑦′) 𝑟𝑥𝑦𝑠𝑦/𝑠𝑥 - 𝑟𝑥𝑥′ + 𝑟𝑥𝑦
2  / 1- 𝑟𝑥𝑦

2  

  

𝑏𝐺𝑦.𝑥 = 𝑟𝑦𝑦′ - 𝑟𝑥𝑦
2 −  (1 − 𝑟𝑥𝑥′)𝑟𝑥𝑦𝑠𝑥/𝑠𝑦 - 𝑟𝑥𝑥′ / 1- 𝑟𝑥𝑦

2  

 

 

 
As noted by O’Conner (1971), the Lord-McNemar approach can be expressed in more 
general terms. To estimate the true gain G = Y – X, with some estimator, 𝐺  = ky + mx, 
where k and m are weights, t  is defined as the error of estimate, i.e., difference between 
the true value G, and our estimate, G:  
                                                  t = G  - 𝐺   
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Lord/McNemar Estimated True Gain (CTT) 

Components  

 

Reliability estimate of score X     𝒓𝒙𝒙′ 
 

Reliability estimate of score Y      𝒓𝒚𝒚′ 
 

Standard deviation of scores for X  𝒔𝒙 
 

Standard deviation of scores for Y    𝒔𝒚 
 

Correlation between scores X and Y   𝒓𝒙𝒚 
 

Mean of scores X  𝒙  
 

Mean of scores Y   𝒚  
  

From these set of parameters partial regression coefficients 𝒃𝑮𝒙.𝒚, 𝒃𝑮𝒚.𝒙 are estimated and 
used as weights in a multiple regression equation to predict an examinee’s true score gain 
 
Brennan (2006) noted this is likely the best estimate of a gain score available. 
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Lord/McNemar Estimated True Gain (CTT) 

 
The reliability of the estimated true gain score is  
 

𝑮 𝑮 ′ = 1 - (𝑏𝐺𝑥.𝑦2  𝑥
2(1- 𝑟𝑥𝑥′) + 𝑏𝐺𝑦.𝑥2

  𝒚
2 (1− 𝑟𝒚𝒚′))/𝑮 

2

.
 

 
 where  𝑮 2  = (𝑏𝐺𝑥.𝑦2𝑥2 + 𝑏𝐺𝑦.𝑥 2𝑦

2)+2(𝑏𝐺𝑥.𝑦2𝑏𝐺𝑦.𝑥2𝑟𝑥𝑦𝑥
2𝒚
2) 
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Lord/McNemar Estimated True Gain 

McNemar (1962, 1969) stated an observed difference score  
is considered dependable if: 
 
𝐷𝑖  = 𝑌𝑖  - 𝑋𝑖   > 1.96 𝐸𝐷  

 
𝐸𝐷  = the standard error of the difference score 

 
Standard Error of Estimate 
> Variance of true scores equals the variance of obtained scores minus the error of 
measurement variance, 2𝐺𝑡  = 2𝐺 -  2𝑒𝑔  

𝟐𝑮𝒕  = (𝑿
𝟐 + 𝒀
𝟐  - 2 xyxy) – (𝟐𝒆𝒙+ 𝟐𝒆𝒚) 

 

𝑮𝒕.𝒙𝒚 = 𝑮𝒕 𝟏 − 
𝟐𝑮𝒕.𝒙𝒚  

 

 
 

13 



Example: Grade 5 MI Fall / Spring Scores 

𝒓𝒙𝒙′  = 𝟎. 𝟖𝟓𝟔𝟕   𝒓𝒚𝒚′  = 𝟎. 𝟖𝟓𝟔𝟕       𝒔𝒙 = 𝟏𝟓𝟕. 𝟐𝟑    𝒔𝒚 = 𝟏𝟓𝟕. 𝟏𝟕𝟔 
 

  𝒓𝒙𝒚 = 𝟎. 𝟕𝟕𝟓𝟓     𝒙 = 𝟓𝟗𝟖. 𝟏𝟓     𝒚   = 725.796 

LN <- function(x){ 
 W1 <- 1/(1-cor^2)*((((cor * sd2)/sd1)*(1-rel.2))-rel.1+(cor^2)) 
 W2 <- 1/(1-cor^2)*((((cor * sd1)/sd2)*(rel.1-1))+rel.2-(cor^2)) 
 Z <- (m2-m1) + W1 * (x$QSCORE-m1) + W2 * (x$QSCORE2-m2) 
out <- data.frame(w1=W1, w2=W2, Z=Z) 
  return(out) 
}  
 

 LN( jj3[1,]) 

          w1        w2        Z 

1 -0.4391351 0.4322391 176.6696 
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Results 
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Results 
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Results 
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Results 
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Comparison of Selected SGPs and Gains 
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Extensions 

Lord-McNemar in Bayesian framework 
  

Instead of a point estimate of true score we can derive a posterior distribution 

of credible values for an estimated gain score from which to make inferences. 
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Lord-McNemar Bayesian Formulation in JAGS 
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model_string <- " 

  model { 

    for(i in 1:n) { 

      x[i,1:2] ~ dmnorm(mu[], prec[ , ]) 

  
    Z[i] <- (mu[2]-mu[1]) + W1 * (x[i,1]-mu[1]) + W2 * (x[i,2]-mu[2]) ## Lord-McNemar estimated gain 

  
    } 

  
rel.1 <- 0.857  ## score reliability for test 1 and test 2 are assumed known 

rel.2 <- 0.835 

W1 <- 1/(1-rho^2)*((((rho * sqrt(sigma[2]))/ sqrt(sigma[1]))*(1-rel.2))-rel.1+(rho^2)) ## weight 1 

W2 <- 1/(1-rho^2)*((((rho * sqrt(sigma[1]))/ sqrt(sigma[2]))*(rel.1-1))+rel.2-(rho^2)) ## weight 2 

  
    # Constructing the covariance matrix and the corresponding precision matrix. 
    prec[1:2,1:2] <- inverse(cov[,]) 

    cov[1,1] <- sigma[1] * sigma[1] 

    cov[1,2] <- sigma[1] * sigma[2] * rho 

    cov[2,1] <- sigma[1] * sigma[2] * rho 

    cov[2,2] <- sigma[2] * sigma[2] 

     
    # Diffuse priors on all parameters which could, of course, be made more informative. 
    sigma[1] ~ dunif(0, 10000)  
    sigma[2] ~ dunif(0, 10000) 

    rho ~ dunif(0, 1) 

    mu[1] ~ dnorm(600, 0.00001) 

    mu[2] ~ dnorm(730, 0.00001) 

  
    # Generate random draws from the estimated bivariate normal distribution 

    x_rand ~ dmnorm(mu[], prec[ , ]) 

  
  } 

" 



MCMC Diagnostics for the Correlation Parameter 
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MCMC Diagnostics for a single estimated gain score 
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MCMC Diagnostics for the variance 
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MCMC Diagnostics for the 2nd partial regression coefficient 
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Kelley’s Bayesian Model in JAGS  

Unknown Mean, Known Variances 

 
model_string.K1 <- "model { 

mu.T ~ dnorm(600, 0.0001) 

 

tau.t <- 0.0000474;  

tau.e <- 0.000284  

 

sigma2.t <- 1/tau.t 

sigma2.e <- 1/tau.e 

 

   for (i in 1:n){ 

T[i] ~ dnorm(mu.T, tau.t) 

x[i] ~ dnorm(T[i], tau.e);  

 

} 

 

reliability <- sigma2.t/(sigma2.t + sigma2.e); # reliability  

} 

" 
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